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Fig. 4. Acomparison ofsolutions of the Saint Venant equations (solid line) with solutions of the diffusion equation
(dashed line) Normalized discharge q, is shown as a function ofnormalized time /„ for two values of Dt, the time at
which lateral inflow ceases, (a) F0 = 0.25; k= 10; D, = 0.5, 0.849. (b) F0 = 0.4; * = 20; Dm = 0.5, 0.849. The dotted line is a
solution of the Saint Venant equations obtained using an alternative characteristic network.

F02k[l - (1/F02)]. Because F02k = S0L0/H0, the parameter F02
only enters into the diffusion equations through the lower
boundary condition.

We have used an implicit finite difference method to solve
(14). Figure 4 shows partial equilibrium hydrographs calcu
lated from the diflusion equation and the corresponding hy
drographs obtained by the characteristic method from the
Saint Venant equations. The values of F0 and k lie at the
boundary of the field of values for which the numerical
method of solution of the Saint Venant equations is adequate.
For F„ = 0.25, k = 10, for example, the numerical method
breaks down very shortly after the onset of recession for D„ =
0.849, and it is impossible to calculate the whole of the rising
hydrograph. The solutions are also sensitive to the form of the
numerically obtained characteristic net. The solid and dotted

lines in Figure 4b show the rising hydrograph for F0 = 0.4,
k = 20 calculated using nets based on critical flow and normal
flow normalization of the Saint Venant equations [see Wool
hiser and Liggett, 1967]. There is a significant difference be
tween the results in the lower part of the hydrograph. Bearing
in mind, therefore, that these numerical solutions of the full
Saint Venant equations are subject to some error, we see that
the diffusion equation is a reasonable approximation on the
rising limb of the partial equilibrium hydrographs. We would
expect there to be some error in the first part of the rising limb
because here (13) will not be a good approximation to (2). The
diffusion equation gives recession curves which are rather dif
ferent from the Saint Venant recessions. This is because the

effect of cessation of lateral inflow appears immediately as a
decrease in the outflow rate in the diffusion equation solu-

••/
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Fig. 5. A comparison of solutions of the diffusion equation (solid line) with solutions of the kinematic equation
(dashed line). Normalized discharge qt is shown as a function ofnormalized time tt for various values ofZ\, the time at
which lateral inflow ceases, (a) F0 = 0.15; k = 20; Dt = 0.5, 0.849. (b) F0 = 0.1; k = 50; Z>, = 0.5, 0.849.

tions, whereas with the full equations (and, for that matter,
with the kinematic equations) there is a delay.

As F0—* 0 and k —* oo, the diffusion equation solutions ap
proach the Saint Venant solutions. Figure 5 shows partial
equilibrium hydrographs calculated using the diffusion equa
tion in the region of low F0 and high k where the numerical
solution of the characteristic equations fails. Fow low values
of F0 the kinematic equation is not a good approximation to
the diffusion equation when k = 20. As F0 -» 0, the value of k
at which the kinematic equation can be used instead of the
full shallow water equations increases approximately as 1/F02.
This is because Ihe downstream boundary condition has a
marginal effect on the upstream depth profile when the kine
matic approximation holds. The diffusion equation, which at
low F„ and high k is a good approximation to the shallow wa
ter equations, and its upstream boundary condition can be

written in terms of one parameter F(2k. Thus when the down
stream boundary condition, which includes both F02k and F0,
is not significant, all solutions of the diffusion equation with
the same F02k are similar. For low values of F0 the kinematic
approximation can be made if F02k ^ 5. This condition is
compatible with the condition k > 20 given by Woolhiser and
Liggett [1967] for F0 2= 0.5.

Discussion

This result has interesting implications for the modelling of
real overland flow problems. For a given roughness C and
rainfall q the conditions FQ2k = 5, F„ «£ 0.5; k = 20, F0 > 0.5
can be written as equations relating L0, the length of a slope
and 5(„ its gradient. These equations are plotted in Figure 6
for a high rainfall, q = 3 x 10"5 m s_l (about 4 in./h), and for
three Chezy roughnesses. The change of gradient occurs at
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Fig. 6. The relation between length Lq and gradient S0 ofslopes on which the criteria F02k = 5, F0 «s 0.5; k= 20, F0 3= 0.5
apply. The rainfall q = 3 X 10~5 m s-1.

F0= 0.5. For a given value of C, F0 increases linearly with S0.
A smooth concrete surface will have a Chezy C « 40 m1/2 s"1.
The flow on slopes with values of L0 and S0 which lie to the
right of the curve for the appropriate value of C can be ade
quately described using the kinematic approximation.

Consider for example a concrete slope of length 50 m and
gradient 0.001. If the rainfall is q = 3 X 10-5 m s~\ the point
L0 = 50 m, S0 = 0.001 lies to the left of the curve for C = 40
m'/2 s-1. Thus the kinematic approximation should not then
be used. Note that the new criterion F02k 2= 5 for low values of
F„ restricts the range of values of L„ and S0 for which the ki
nematic approximation can be used. In particular, we suggest
that it is necessary to use the full shallow-water equations, or
at least the diffusion equation, for overland flow on very flat
grassy slopes, although it has been assumed that since the val
ues of k are very large the kinematic equation must be ade
quate.

Physically, the parameter F02k or S0L0/H0 represents the ra
tio of the difference in elevation between the top and bottom
of the plane and the normal depth of flow at the downstream
boundary. Therefore it is quite easy to decide whether or not
the kinematic model is appropriate.
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